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Therefore, it has to be 'concluded that judgement 
of the validity of the approximation at Ul equal to 
one r.m.s.d, is not sufficient. An interval of at least 
three times the r.m.s.d, should be taken into consider- 
ation. 

If large anharmonic effects are supposed, even 
greater regions in u have to be considered, because 
of the deformation of the normal distribution of the 
harmonic p.d.f. 
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Abstract 

Many-beam diffraction effects in non-centrosym- 
metric crystals have been studied with emphasis on 
three-beam interactions and determination of three- 
phase structure invariants in electron diffraction 
experiments. The effective structure factor has been 
determined both by numerical many-beam calcula- 
tions and from the second Bethe approximation. The 
dependence of this factor on the phase invariant, the 
excitation errors and the magnitude of the structure 
factors involved has been discussed in detail. From 
the values of the effective structure factors at sym- 
metrical positions on each side of a three-beam condi- 
tion an asymmetry ratio is introduced. By a com- 
parison of the observed variation in this ratio with 
theoretical profiles, it has been shown that the magni- 
tude of three-phase invariants can be determined in 
the non-centrosymmetric case. This method may in 
principle be applied in any type of electron or X-ray 
three-beam experiments where variations in the 
effective structure factor are projected out. An 
example from electron channelling patterns is given. 

Introduction 

The structure-factor phase problem is central in all 
crystallographic diffraction studies, and various 
methods are used to handle it. In X-ray structure 
determination using direct methods phases are 
usually estimated with some probability by statistical 
methods from relations between structure-factor 
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amplitudes (e.g. Woolfson, 1987). One direct way, 
however, to solve the problem is to utilize the intensity 
anomalies observed in dynamical many-beam diffrac- 
tion experiments. Here additional information is 
available compared with standard experiments. This 
concerns in principle both the magnitudes of the 
structure factors and the three-phase structure 
invariants. 

In many-beam investigations a perturbed two- 
beam, or two-Bloch-wave, point of view has often 
proved to be successful. On this basis the effective 
structure factor has been introduced, and a theoretical 
background for obtaining structure-factor phase 
information has been established. It is clear that three- 
phase invariants, in principle, can be determined from 
any type of electron or X-ray three-beam experiment 
where the effective structure factor, i.e. the effective 
dispersion surface gap width, is projected out. In 
practice this possibility is now well established for 
the centrosymmetric case. 

Dependence of the observed intensity anomalies 
on the various parameters in mainly centrosymmetric 
crystals has been discussed in non-systematic many- 
beam electron diffraction cases by, for example, 
Kambe (1957), Gj0nnes & H0ier (1971), Gj0nnes 
(1981) and Marthinsen & H0ier (1986). The X-ray 
case has been discussed by Post (1979, 1983), Chap- 
man, Yoder & Colella (1981), Marthinsen (1981), 
Thorkildsen & Mo (1982), Chang (1982, 1986), 
Juretschke (1982, 1986), Hfimmer & Billy (1982, 
1986), H0ier & Marthinsen (1983), Thorkildsen 
(1987) and Marthinsen & H0ier (1987). 

In the present studies we shall focus on the determi- 
nation of effective structure factors and a new method 
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to determine structure-factor phase invariants. Cen- 
trosymmetric crystals have been studied in some 
detail previously. In the present investigation we shall 
therefore concentrate on the general non-centrosym- 
metric case. Some results have been given previously 
by Marthinsen, Matsuhata, H0ier & Gj0nnes (1987). 

Table 1. Structure factors  Uh fo r  electron diffraction in 
GaP at 40 kV 

Reflection hkl ] Uhkl[ (1~ -2) ~hkl (o) 
g 3 3 1 0"42 --27 
h 4 4 2 0.17 0 

g - h  i T 3 0"95 34 

Theory 

A general three-beam case is shown schematically in 
Fig. 1, where the straight lines h and g represent the 
zone boundaries for the reflections h and g. The 
kinematical condition of simultaneous Bragg reflec- 
tion corresponds to the position T, which is the centre 
of the Ewald sphere projected on the reciprocal plane. 
The deviation from the Bragg condition, the excita- 
tion errors Sh and Sg, is linearly dependent on the 
parameters x and y which determine the position 
r(x, y) of the projected Ewald-sphere centre in the 
general case: 

ksg = r . g. (1) 

Here k is the wave vector and g the reciprocal-lattice 
vector for the reflection g. 

The geometric positions of the Bragg condition in 
both the kinematic and the two-beam cases are thus 
represented by the straight lines. They also represent 
the projection on the reciprocal plane of the position 
of the two-beam dispersion surface gap, i.e. the posi- 
tion where the distance between the two dispersion- 
surface sheets has its minimum value and con- 
sequently the Bragg scattering its maximum value. 

When three beams or more are present simul- 
taneously, the particular incident-beam direction 
which corresponds to minimum distance between the 
two dispersion-surface sheets also excited in the two- 
beam case, and hence maximum Bragg scattering in 
this case, is displaced from the two-beam direction. 
Projected on the reciprocal plane; the positions of 
the perturbed two-beam gaps will, in the three-beam 
case, be along the two hyperbolae shown schemati- 

On 
g 

0 

Fig. 1. 0, h, g three-beam case. Dispersion-surface gap positions 
projected on reciprocal plane (not to scale). The small circle on 
branch 1 indicates the position of minimum dispersion-surface 
gap width. 

cally in Fig. 1. At one particular position, indicated 
with a circle, the perturbed gap width associated with 
the weaker h beam may have a minimum. For cen- 
trosymmetric crystals this position corresponds to the 
critical direction degeneracy discussed by Gj0nnes & 
H0ier (1971). 

The magnitude of the effective structure factor, 
] U~nl, is now defined from the calculated perturbed 
two-beam gap width which shall be determined 
numerically from full many-beam calculations using 
three or more beams. For comparison, calculations 
based on the Bethe approximation are included. This 
analytical expression, which includes explicitly the 
most important parameter dependences to be expec- 
ted in the full calculations as well, may be written 
for the weak h beam in the three-beam case as 

Uh 2ksg cos ~ 

+ (] Ug] Uh_~ '~ 2 ~]~/2 (2) 
U h 2ksg ] sin2 

The generalization to further interacting beams g is 
straightforward. In the equation the excitation error 
Sg of the coupled beam is defined negative when the 
reciprocal-lattice point g is outside the Ewald sphere. 
The quantity ~, is the three-phase structure invariant 

= ~-g+ ~h + ~g-h. (3) 

Here ~h is the phase of the structure factor, i.e. Uh = 
[Uh[ exp (i~h). 

Calculations 

In the calculations we shall use an example from 
GaP. Data for the structure factors, i.e. the Fourier 
coefficients of the potential, are given in Table 1. 

From the data in Table 1 the three-phase invariant 
in this case is seen to be ~ = 61 °. 

As in the standard theory (e.g. Humphreys, 1979), 
a cut through the three-beam dispersion surface, 
defined by the Anpassungen  y J, is now calculated 
numerically for each value of x by varying the par- 
ameter y in Fig. 1, using (1) to determine sg and Sh. 
In this way the position of the dispersion-surface gap 
as well as the gap width are determined. The section 
for constant x going along the line a in Fig. 5 (i.e. 
close to the minimum-gap position in Fig. 1) is shown 
in Fig. 2. This section corresponds to going from a 
one-beam case (no diffraction) through a three-beam 
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case slightly off the exact three-beam condition (the 
distance x = a) and then back to a one-beam case 
again. In this figure the dashed straight lines indicate 
the surfaces of the spheres around each reciprocal- 
lattice point, and the bars at the bottom show by their 
positions and lengths the two-beam positions and gap 
widths, respectively. The gap to the left, which corre- 
sponds to the g beam, is enhanced relative to the 
two-beam value. The other gap corresponds to the 
weakened h beam. 

The gap positions are found to be located in the 
projection as shown schematically in Fig. 1. Segments 
1 and 2 correspond to the new displaced Bragg posi- 
tions of the weaker of the two reflections, h, and 
segments 3 and 4 to the stronger one, g. 

The effective structure factor given by the calcu- 
lated gap width along the h segments 1 and 2 in Fig. 
1 is shown in Fig. 3(a) as a function of the deviation 
parameter x. In addition to the actual case with 
equal to 61 ° the phases have been varied as shown. 
The magnitudes of the three structure factors involved 
have been kept constant. 

For negative x Fig. 3(a) shows that I U~f~ I increases 
continuously with increasing x and increases when 
the phase invariant decreases from 90 ° to 0. 

For positive x and small values of the invariant, 
]U~ f~] first decreases and then increases towards the 
two-beam value for increasing x. When the phase 
invariant is larger, the minimum is less pronounced 
and almost unobservable at ~ =61 °. For 4' = 0 ° the 
gap is zero for a particular x (and y) value in agree- 
ment with the analytical solutions found by Gj~nnes 
& H~ier (1971) for this case. These solutions also 
show that the x, y set have opposite sign when q, = 
180 ° . It should also be noticed that the effective struc- 
ture factor is symmetric in x when q, = 90 °. 

Based on Fig. 3 we now define the effective struc- 
ture-factor asymmetry ratio 77 by the values at x and 
- x ,  i.e. 

IuZ"(x <o)1 
n =  I u g " ( - x ) l  " (4) 

2.0- 

2k3" 
(A-~I 
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Fig. 2. Calculated dispersion surface as a function of y for the 
000, 331, 4~,2. three-beam case in GaP corresponding to section 
a in Fig. 5(a). 

The calculated variation in this quantity with the 
diffraction condition is shown in Fig. 4(a). An 
analogous ratio based on Bethe intensities has pre- 
viously been introduced by Juretschke (1982). 
However, the asymmetry ratio defined here, based on 
effective structure factors, is more general in that it 
may be extracted from any type of three-beam experi- 
ment where variations in the effective structure factor 
somehow project out. The ratio in (4) is seen from 
the figure to be strongly dependent on the phase 
invariant. It diverges for a particular x value when 
@ = 0 ° and is constant for @--90 °. It should here be 
stressed that the inverse ratios are found for negative 
values of the cosine term in (2). 

Fig. 4(a) shows the variation in the weaker of the 
two Bragg beams, h, while (b) shows the stronger 
one, g. It is clear that the strongest variation will be 
found in the h reflection. This agrees with the approxi- 
mate solution given in (2). Here one of the important 
parameters for the perturbation of the weakest beam, 
h, is the structure-factor product IU IIuh- I/Iuhl. 
This product is 2.3 A -2 in Fig. 4(a) and 0 .4A -2 
in Fig. 4(b). With decreasing structure-factor product 
the effect hence decreases and the position of the 
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Fig. 3. Variation in the effective structure factor, I U~,fr], with the 
deviation parameter and the three-phase structure invariant. (a) 
Full three-beam calculations. (b) Calculations based on the 
second Bethe approximation. 
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maximum structure-factor asymmetry ratio moves 
towards smaller x values. 

To investigate the validity of the second Bethe 
approximation in this connection, the effective struc- 
ture factor has been calculated for the same case as 
the one above. The results for the weak beam are 
shown in Fig. 3(b). The corresponding variation in 
the asymmetry ratio shown in Fig. 4(c) is in principle 
similar to the Bethe-intensity results of Juretschke 

4 
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012 Om'4 0)6 
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= 0  o 
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r/ 

3 
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BT o 
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Fig. 4. Calculated asymmetry ratio 7) as a function of the devi- 
ation parameter x. (a) Full three-beam calculations. 
)U~llUh-glluhl-' = 2.3 A-2. (b) Full three-beam calculations. 
]Uglluh_gllUhl-'=o.4A -2. (c) Calculations based on the 
second Bethe approximation. I U~llUh-gllUhl -' = 2.3 A-z. 

(1982). The correspondence between the full calcula- 
tions and the Bethe approximation for the weakest 
beam is very good apart from near the Bragg condi- 
tion. For the stronger g beam the asymmetry in the 
full calculations is much smaller than for the h beam, 
and the Bethe results can in this case only be applied 
at large angles, as expected. 

These results clearly demonstrate the applicability 
of the asymmetry-ratio method for determination of 
three-phase structure invariants, i.e. the phase 
invariant may in the general non-centrosymmetric 
case be determined by comparing the experimentally 
determined asymmetry ratios with profiles calculated 
for different structure-factor products. It should be 
stressed here, however, that this method is limited to 
the determination of the magnitude of the phase 
invariants. To distinguish between enantiomorphic 
forms the same type of many-beam effects can be 
used if the convergent-beam electron diffraction 
method is used (Goodman & Johnson, 1977). 

As to the possible precision with which the phase 
invariants may be estimated, that depends strongly 
on the type of experiment used. But with an optimal 
experiment and proper intensity measurements, as 
for example the convergent-beam technique (H0ier, 
Zuo, Marthinsen & Spence, 1988), precision of some 
degrees seems to be achievable. 

An example 

The asymmetry ratio rl(x) may in principle be extrac- 
ted from any type of three-beam experiment. We shall 
here demonstrate one possibility, the selected-area 
channelling technique. The line contrast is here 
approximately proportional to the dispersion-surface 
gap width (e.g. Marthinsen & H0ier, 1986), and the 
effective structure-factor ratio rl(x) may hence be 
found directly from experiments. The observed vari- 
ation may then be compared with calculated profiles. 

A theoretical example is shown in Fig. 5. In Fig. 
5(a) calculated profiles are shown for the case given 
in Table 1, i.e. the 000, 331,442 three-beam case in 
GaP. The asymmetry ratio may be found by determin- 
ing effective structure factors from profiles of the type 
x = - a  and x = a, where x is the distance from the 
line crossover. The line contrast, and hence effective 
structure factor for qJ = 61 °, for example, decreases 
for small and increasing positive x. For larger x it 
goes through a weak minimum and then increases 
again towards the two-beam value (Fig. 3). 

= 0 ° represents one of the possible centrosym- 
metric cases, and the calculated profile in Fig. 5(b) 
hence shows, as expected, the effect of zero effective 
structure factor for the weak beam, 442. The corre- 
sponding zero contrast is seen within the encircled 
area in the figure. If qJ is taken to be 180 ~, this effect 
is found symmetrically at the other side of the cross- 
over, i.e. for opposite signs of the excitation errors. 
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Concluding remarks 

The effective structure factor, I U~,erl, and the associ- 
ated dispersion-surface gap width are, as expected, 
found to depend strongly on the value of the three- 
phase structure invariant @. The degeneracy seen in 
the centrosymmetric case thus disappears rapidly with 
deviation from centrosymmetry. The inclusion of 
absorption in the diagonalization is not believed to 
have any important effect in this connection. The 
Bethe approximation is generally found to be good 
for the weakest beam apart from close to the simul- 
taneous Bragg condition. 

I I 

The structure-factor asymmetry ratio ~/may in prin- 
ciple be determined from any type of three-beam 
experiments, e.g. convergent beam, channelling pat- 
terns, equal-thickness fringes, X-ray Pendell6sung, X- 
ray single crystal or mosaic crystals. By comparison 
with theoretical profiles the magnitude of a large 
number of three-phase invariants may in such cases 
be determined from the observed intensities in the 
non-centrosymmetric case. These values may then be 
used as a starting set in the standard crystallographic 
programs. 

In addition to the structure invariant, the ratio ~(x) 
depends on the excitation error of the coupled beam 
and on the structure-factor product I u llu - l/I U l. 
The latter dependence shows, for example, that as a 
rule this effect is strongest in the weaker of the two 
coupled beams. Parameter dependences of this type 
may profitably be represented by calculated standard 
diagrams. Such calculations and applications using 
especially the convergent-beam technique will be 
published separately. 
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Fig. 5. Calculated channelling contrast for the 000, 331,442. three- 
beam case in GaP. (a) ~b = 61°; (b) ~b = 0 °. 
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